Viral expression of insulin-like growth factor I E-peptides increases skeletal muscle mass but at the expense of strength.

نویسندگان

  • Becky K Brisson
  • Janelle Spinazzola
  • SooHyun Park
  • Elisabeth R Barton
چکیده

Insulin-like growth factor I (IGF-I) is a protein that regulates and promotes growth in skeletal muscle. The IGF-I precursor polypeptide contains a COOH-terminal extension called the E-peptide. Alternative splicing in the rodent produces two isoforms, IA and IB, where the mature IGF-I in both isoforms is identical yet the E-peptides, EA and EB, share less than 50% homology. Recent in vitro studies show that the E-peptides can enhance IGF-I signaling, leading to increased myoblast cell proliferation and migration. To determine the significance of these actions in vivo and to evaluate if they are physiologically beneficial, EA and EB were expressed in murine skeletal muscle via viral vectors. The viral constructs ensured production of E-peptides without the influence of additional IGF-I through an inactivating mutation in mature IGF-I. E-peptide expression altered ERK1/2 and Akt phosphorylation and increased satellite cell proliferation. EB expression resulted in significant muscle hypertrophy that was IGF-I receptor dependent. However, the increased mass was associated with a loss of muscle strength. EA and EB have similar effects in skeletal muscle signaling and on satellite cells, but EB is more potent at increasing muscle mass. Although sustained EB expression may drive hypertrophy, there are significant physiological consequences for muscle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسۀ آرایش تمرین موازی بر ویژگی‌های آنتروپومتری، سطوح سرمی IL-15 و شاخص مقاومت به انسولین زنان یائسه

Background and Objective: Exercise activities have an important role in increasing lean body mass and quality of life in the elderly. Skeletal muscle through the release of myokines have a significant role in muscle growth and improves metabolic condition. The purpose of this study was to investigate the comparison of order of concurrent training on anthropometric characteristics, serum IL-15 l...

متن کامل

Effect of eight weeks of resistance training on the expression of klotho protein and insulin-like growth factor 1 genes in slow twitch and fast twitch skeletal muscles of aged Wistar rats

Background and Aims: Klotho protein is a substance effective in increasing life expectancy. Moreover, it prevents muscle atrophy, osteoporosis, and cardiovascular disease. Therefore, the present aimed to assess changes in the expression of klotho protein and insulin-like growth factor 1 (IGF-1) genes in the muscles of aged Wistar rats after eight weeks of resistance training. Materials and Met...

متن کامل

Viral expression of insulin-like growth factor-I isoforms promotes different responses in skeletal muscle.

Insulin-like growth factor I (IGF-I) is a critical protein for skeletal muscle development and regeneration. Its ability to promote skeletal muscle hypertrophy has been demonstrated by several methods. Alternative splicing of the Igf-1 gene does not affect the mature IGF-I protein but does produce different E peptide extensions, which have been reported to modify the potency of IGF-I. Viral-med...

متن کامل

Viral mediated expression of insulin-like growth factor I blocks the aging-related loss of skeletal muscle function.

During the aging process, mammals lose up to a third of their skeletal muscle mass and strength. Although the mechanisms underlying this loss are not entirely understood, we attempted to moderate the loss by increasing the regenerative capacity of muscle. This involved the injection of a recombinant adeno-associated virus directing overexpression of insulin-like growth factor I (IGF-I) in diffe...

متن کامل

The Effect of 8 Weeks Resistance Training With Low Load and High Load on Testosterone, Insulin-like Growth Factor-1, Insulin-like Growth Factor Binding Protein-3 Levels, and Functional Adaptations in Older Women

Objectives The loss of muscle mass in older adults is attributed to the impaired ability of the skeletal muscle in response to anabolic stimuli and the increased activation of the proteolytic signaling pathway. With increasing age, plasma concentrations of circulating anabolic hormones and growth factors, e.g. testosterone, Insulin-like Growth Factor-1 (IGF-1) and Insulin-like Growth Factor Bin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 306 8  شماره 

صفحات  -

تاریخ انتشار 2014